06930400 SHANGHAI SPRING NEAR WAYNESVILLE, MO (Ambient water-quality monitoring network) ## WATER-QUALITY RECORDS LOCATION.--Lat $37^{\circ}45'54''$, long $92^{\circ}01'00''$, in sec.24, T.36 N, R.11 W., Pulaski County, Hydrologic Unit 10290202. Take exit 163 south outer road east toward Devil's Elbow, turn right on first gravel road, continue about 5 mi until you reach a wooden bridge. PERIOD OF RECORD. -- November 1993 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 | DATE | CHA
IN
(CU
F
TIME P | | CIPER- CCURE DUER ANC | PE- WAR PE- WAR PE- | FAND-
RD SC
ETS) (n | XYGEN,
DIS-
DLVED
ng/L)
0300) | OXYGEN DIS- SOLVE (PER- CENT SATUR- ATION) | DEMA DEMA DEMA LEVEL (mg/L | AND, FC AND, FE A1 0. GGH µm L) (COI L) 100 | DRM, T
ECAL,
.7 K
n-MF (
ES./
mL) 10 | FECAL,
F AGAR
COLS.
PER (
0 mL) | AlKA-
LINITY
WAT WH
TOT FET
FIELD
mg/L as
CaCO ₃)
(00410) | |------------------|---|---|--|---|---|---|--|---|--|--|---|--| | DEC
06 | 1230 | 18 14 | .0 4 | 73 | 7.3 | 6.8 | 67 | _ | | 62 | к8 | 219 | | JAN
31 | 1422 | 50 13 | .0 4 | 40 | 7.4 | 7.5 | 70 | <1 | .0 | 56 | K17 | 122 | | MAR
18 | 1248 | 17 13 | .5 4 | 30 | 7.1 | 7.0 | 67 | _ | | K1 | к8 | 191 | | APR
12 | 1430 | 26 13 | .0 3 | 102 | 7.2 | 7.2 | 68 | _ | | 21 | 40 | 123 | | JUN 11 | 1400 | | | | 7.1 | 7.5 | 72 | <1 | 0 3 | 300 | 310 | 152 | | AUG
26 | 1200 | | | | 7.3 | 6.4 | 63 | | | 60 | 250 | 182 | | 20 | 1200 | 20 15 | .0 4 | :25 | 7.3 | 0.4 | 0.3 | _ | | 60 | 250 | 102 | | DATE | BICAR-
BONATE
WATER
WH IT
FIELD
(mg/L as
HCO ₃) | CAR-BONATE WATER WH IT FIELD (mg/L as CO ₃) (00447) | NITRO-
GEN,
NO ₂ +NO ₃
TOTAL
(mg/L
as N)
(00630) | NITRO-
GEN,
NITRITE
TOTAL
(mg/L
as N)
(00615) | GEN, | ORGAN
TOT
(mg
as | AM-
A + P
IIC PH
AL T
/L (
N) & | HOS-
HORUS
OTAL
mg/L
as P)
0665) | PHOS-PHORUS ORTHO TOTAL (mg/L as P) (70507) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃) | (mg
as (| S-
VED
1/L
Ca) | | DEC | | | | | | | | | | | | | | 06
JAN | 271 | 0 | 2.50 | <0.010 | 0.010 | <0. | | .200 | 0.210 | | | _ | | 31
MAR | 149 | 0 | 1.70 | 0.010 | 0.030 | <0. | | .100 | 0.100 | 150 | | 1 | | 18
APR | 235 | 0 | 2.40 | <0.010 | 0.030 | <0. | | .130 | 0.150 | | | _ | | 12
JUN | 146 | 0 | 1.80 | <0.010 | 0.010 | 0. | | .100 | 0.100 | | | _ | | 11
AUG | 186 | 0 | 1.80 | 0.010 | 0.020 | <0. | 20 0 | .180 | 0.190 | 170 | 3 | 7 | | 26 | 226 | 0 | 1.90 | <0.010 | <0.010 | <0. | 20 0 | .230 | 0.230 | | - | - | | DATE | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | SODIUM,
DIS-
SOLVED
(mg/L
as Na) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | CHLO-
RIDE,
DIS-
SOLVEI
(mg/L
as C1) | RID:
DI:
SOL'
(mg
as l | O- RE
E, AT
S- D
VED
/L S
F) (1 | SIDUE
180
EG. C
DIS- | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | ALUM-
INUM,
TOTAL
RECOV
ERABL
(µg/L
as Al | - DI
E SOL
(μg
) as | M,
S-
VED
/L
Al) | | JAN
31 | 18 | 11 | 1.7 | 11 | 19 | 0. | 10 | 220 | 11 | 690 | <20 | | | JUN
11 | 20 | 6.4 | 1.7 | 8.7 | 15 | 0. | | 248 | 5 | 120 | | . 6 | | DATE | CADMIUM TOTAL RECOV- ERABLE (µg/L as Cd) (01027) | CADMIUM
DIS- | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON, DIS- SOLVED (µg/L as Fe) (01046) | LEAD,
TOTAL
RECOV-
ERABLH
(μg/L
as Pb) | LEA
- DI
E SOL
(μg, | M
D, N
S-
VED S
/L (
Pb) a | | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | ZINC,
TOTAL
RECOV
ERABL
(µg/L
as Zn | ZIN
- DI
E SOL
(µg.) as | IC,
S-
VED
/L
Zn) | | JAN
31
JUN | <1 | <1.0 | <1.0 | 3.0 | 1 | <1 | .0 < | 1.0 | <0.10 | <4 | <4 | . 0 | 3.0 1 <1.0 0.90 <0.10 2 1.3 $K--Results \ based \ on \ colony \ count \ outside \ the \ acceptable \ range \ (non-ideal \ colony \ count).$ <1.0 <1 <1.0